Optical Sensor

Wide, High Speed, High Resolution Laser Autocollimator: Smart W-LAC

H900 Series

H920 Series

Feature

Flagship Model.
Laser autocollimator can measure
Wide angle range with
Fast sampling and High resolution.
4 different Angle Range is available.
±0.17deg, ±0.5deg, ±0.9deg and ±5deg

- Wide angle 5.0degree [H920Series]
 1 sec High resolution and 200kHz sampling Applications: Wide angle lens check,
 MEMS Mirror chance Evaluation
- Fast Sampling Max0.4sec [H900Series]
 It is possible evaluate quick move object.
 For example, it can measure 3,000point per one rotation with 10,000rpm motor rotation.
 Then it is possible precise evaluation for fast rotate object.

Analog voltage signal output [H900,H920Series] It is possible to set up various analysis method such as FFT or Oscilloscope analysis by connecting Analog out put directly to other analysis device.

For example, Optical vibration analysis such as observation of resonance points of optical devices is possible.

Laser autocollimator

High speed• High resolution

SPECS

Smart W-LAC

			SPEC			
Model		H900-P017C	H900-P050C	H900-P090C	H920-P500	
Sampling Speed	200KHz	×	×	×	0	
	250KHz	0	0	0	×	
	500KHz	0	0	0	×	
Angle Range		±0.17deg	±0.5deg	±0.9deg	±5deg	
Resolution		0.4Sec	1.0Sec	1.8Sec	1.0Sec	
Working Distance		230±30mm	150±3	70±2mm		
Laser Diode		658±10nm				
LD Power		Max. 5mW (Class III)				
Beam Size		Φ1.0mm(Collimate Beam)				
Power		AC 100~240V 15W			DC24V 1.2A	
Sensor Head	Size	162x269x87mm	117x200x87mm		165X170X85mm	
	Weight	4.1kg	1.8kg		2.0kg	
Image Processing Unit	Size	177x179x137mm			202x141x50.5mm	
	Weight	2.1kg			1.0kg	

Dimension

Sensor Head H920-P500

Sensor Head H900-P050C/P090C

High speed• High resolution

Standard

Laser autocollimator

Optical Sensor

Wide angle Example

Laser autocollimator

High-speed, wide-angle laser autocollimators are used in a wide range of fields, from periscope type cameras to MEMS mirrors, to evaluate camera accuracy and scanning accuracy.

Fast and High resolution Example

Precise motor shake measurement.

Actuator motor pitch and Yawing measurement.

Vibration analysis example

Wide drive range Optical system such as a Periscope type optical system require wide angle and precise angle measurement.

And for optical mechanical effect evaluation, it is needed optical vibration analysis. Most of mechanical vibration is less than several hundred Hz. So, sampling speed must be more than several thousand Hz.

Resonance point obtained by Fourier transform.

Motor analysis example

Motor mode

[Motor]			Star	t				
	$ \rightarrow $		Esc	Set				
M – AX: 0.04101 AY: 0.00801 AD: 0.04179								
				115				
[Display]			Esc	113				
[Display] X	Y	D	Esc Data	10				
[Display] X MAX_X	Y NIN_X	D WIDTH_X	Esc Data	40				
[Display] X NAX_X NAX_Y	Y NIN_X NIN_Y	D WIDTH_X WIDTH_Y	Esc Data	10				
[Display] X MAX_X MAX_Y TILT_X	Y NIN_X NIN_Y TILT_Y	D #IDTH_X #IDTH_Y TILT_D	Esc Data	40				

This is the shaft shake observed result.From the trajectory, dynamic shaft tilting is observed.

At the measurement display, each value of XYD, items such as runout width (Width of each Max-Min), axis tilt, and outermost point are selected and displayed.

